News

    Publications

     

    2024

    • Kristian Nzogang Fomo ,Natarajan Perumal,Caroline Manicam,Norbert Pfeiffer and Franz H. Neuroretinal Cell Culture Model as a Tool for the Development of New Therapeutic Approaches for Oxidative Stress-Induced Ocular Diseases, with a Focus on Glaucoma.  Grus; Cells 202413(9), 775; https://doi.org/10.3390/cells13090775
    • Sichang Qu Hao Lin Norbert Pfeiffer Franz H Grus Age-Related Macular Degeneration and Mitochondria-Associated Autoantibodies: A Review of the Specific Pathogenesis and Therapeutic Strategies.  Int. J. Mol. Sci.; 2024 Jan 28;25(3):1624. doi: 10.3390/ijms25031624. Age-Related Macular Degeneration and Mitochondria-Associated Autoantibodies: A Review of the Specific Pathogenesis and Therapeutic Strategies (nih.gov)
    • Natarajan Perumal, Hajime Yurugi, Katrin Dahm, Krishnaraj Rajalingam, Franz H. Grus, Norbert Pfeiffer, Caroline Manicam Proteome Landscape and Interactome of Voltage-Gated Potassium Channel 1.6 (Kv1.6) of the Murine Ophthalmic Artery and Neuroretina.
      International J of Biological Macromolecules ; 2024; 257 https://www.sciencedirect.com/science/article/pii/S0141813023053631?via%3Dihub
    • Martin Schicht, Jessica Farger, Saskia Wedel, Marco Sisignano, Klaus Scholich, Gerd Geisslinger, Natarajan Perumal, Franz H. Grus, Swati Singh, Afsun Sahin, Friedrich Paulsen, Elke Lütjen-Drecoll,
      Ocular surface changes in mice with streptozotocin-induced diabetes and diabetic polyneuropathy,
      The Ocular Surface, Volume 31, 2024, Pages 43-55, ISSN 1542-0124, https://doi.org/10.1016/j.jtos.2023.12.006

     

     2023

    • Pham TNM, Perumal N, Manicam C, Basoglu M, Eimer S, Fuhrmann DC, Pietrzik CU, Clement AM, Körschgen H, Schepers J, Behl C (2023).  Adaptive responses of neuronal cells to chronic endoplasmic reticulum (ER) stress. Redox Biol. doi: 10.1016/j.redox.2023.102943. PMID: 37883843; PMCID: PMC10618786.https://pubmed.ncbi.nlm.nih.gov/37883843/

    • Chronopoulos P, Manicam C, Zadeh JK, Laspas P, Unkrig JC, Göbel ML, Musayeva A, Pfeiffer N, Oelze M, Daiber A, Li H, Xia N, Gericke A (2023). Effects of Resveratrol on Vascular Function in Retinal Ischemia-Reperfusion Injury. Antioxidants (Basel). 1;12(4):853. doi: 10.3390/antiox12040853 https://www.mdpi.com/2076-3921/12/4/853

    • Korb CA, Beck S, Wolters D, Lorenz K, Pfeiffer N, Grus FH (2023); Serum Autoantibodies in Patients with Dry and Wet Age-Related Macular Degeneration. J. Clin. Med. 2023, 12(4), 1590; https://doi.org/10.3390/jcm12041590

    • Korb CA, Lackner KJ, Wolters D, Schuster AK, Nickels S, Beutgen VM, Munzel T, Wild PS, Beutel ME, Schmidtmann I, Pfeiffer N, Grus FH (2023)Association of autoantibody levels with different stages of age-related macular degeneration (AMD): Results from the population-based Gutenberg Health Study (GHS).Graefe's archive for clinical and experimental ophthalmology https://link.springer.com/article/10.1007/s00417-023-06085-2

    • Schmelter C., Brueck A., Perumal N., Qu S., Pfeiffer N., Grus F.H.; Lectin-Based Affinity Enrichment and Characterization of N-Glycoproteins from Human Tear Film by Mass Spectrometry;  Molecules 2023, 28(2), 648; https://doi.org/10.3390/molecules28020648

    • Schmelter CarstenFomo Kristian NzogangBrueck AlinaPerumal NatarajanMarkowitsch Sascha D. D., Govind Gokul, Speck Thomas, Pfeiffer NorbertGrus Franz H. H. Glaucoma-Associated CDR1 Peptide Promotes RGC Survival in Retinal Explants through Molecular Interaction with Acidic Leucine Rich Nuclear Phosphoprotein 32A (ANP32A)   (2023) BIOMOLECULES. 2023; 13(7). Article https://www.mdpi.com/2218-273X/13/7/1161

    • Buonfiglio, F.; Xia, N.; Yüksel, C.; Manicam, C.; Jiang, S.; Zadeh, J.K.; Musayeva, A.; Elksne, E.; Pfeiffer, N.; Patzak, A.; Li, H.; Gericke, A (2023). Effects of Chronic Apolipoprotein E Deficiency on Mouse Ophthalmic Artery Reactivity. Diseases. Preprints 2023, 2023081630. https://doi.org/10.20944/preprints202308.1630.v1

    2022

    • Perumal N, Herfurth A, Pfeiffer N, Manicam C. (2022). Short-Term Omega-3 Supplementation Modulates Novel Neurovascular and Fatty Acid Metabolic Proteome Changes in the Retina and Ophthalmic Artery of Mice with Targeted Cyp2c44 Gene Deletion.Cells. 2022; 11(21):3494. https://doi.org/10.3390/cells11213494

    • Kristian N. Fomo, Carsten Schmelter, Joshua Atta, Vanessa M. Beutgen, Rebecca Schwarz, Natarajan Perumal, Gokul Govind, Thomas Speck, Norbert Pfeiffer and Franz H. Grus Synthetic antibody-derived immunopeptide provides neuroprotection in glaucoma through molecular interaction with retinal protein Histone H3.1Front. Med., Sec. Ophthalmology , doi: 10.3389/fmed.2022.993351https://www.frontiersin.org/articles/10.3389/fmed.2022.993351/abstract 

    • Tonner H, Hunn S, Auler N, Schmelter C, Beutgen VM, von Pein HD, Pfeiffer N, Grus FH (2022)  A Monoclonal Anti-HMGB1 Antibody Attenuates Neurodegeneration in an Experimental Animal Model of Glaucoma. Int J Mol Sci 23.https://www.mdpi.com/1422-0067/23/8/4107/htm

    • Fomo KN, Schmelter C, Pfeiffer N, Grus FH.   Tear Film-specific Biomarkers in Glaucoma Patients. Klin Monbl Augenheilkd. 2022 Feb;239(2):165-168. doi: 10.1055/a-1749-6972. Epub 2022 Feb 24. PMID: 35211938 English, German.

    • Hetsch F, Wang D, Chen X, Zhang J, Aslam M, Kegel M, Tonner H, Grus F, von Engelhardt J (2022);  CKAMP44 controls synaptic function and strength of relay neurons during early development of the dorsal lateral geniculate nucleus. J Physiol 600:3549-3565.

     

    2021

    • Auler N, Tonner H, Pfeiffer N, Grus FH (2021) Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways. Biology (Basel) 10. Antibody and Protein Profiles in Glaucoma: Screening of Biomarkers and Identification of Signaling Pathways (nih.gov)
    • Schmelter C, Fomo KN, Perumal N, Pfeiffer N, Grus FH (2021) Regulation of the HTRA2 Protease Activity by an Inhibitory Antibody-Derived Peptide Ligand and the Influence on HTRA2-Specific Protein Interaction Networks in Retinal Tissues. Biomedicines 9. https://www.mdpi.com/2227-9059/9/8/1013

    • Beutgen VM, Schmelter C, Pfeiffer N, Grus FH (2021) Contribution of the Commensal Microflora to the Immunological Homeostasis and the Importance of Immune-Related Drug Development for Clinical Applications. International journal of molecular sciences 22. https://www.mdpi.com/1422-0067/22/16/8896

    • Beutgen VM, Pfeiffer N, Grus FH (2021) Serological Levels of Anti-clathrin Antibodies Are Decreased in Patients With Pseudoexfoliation Glaucoma. Frontiers in immunology 12:616421. https://www.frontiersin.org/articles/10.3389/fimmu.2021.616421/full

    • Jiong Hu, Marco Sisignano, Roman Brecht, Natarajan Perumal, Carlo Angioni, Iris-Sofia Bibli, Beate Fisslthaler, Hartmut Kleinert, Norbert Pfeiffer, Ingrid Fleming and Caroline Manicam (2021). Cyp2c44 epoxygenase-derived epoxyeicosatrienoic acids in vascular smooth muscle cells elicit vasoconstriction of the murine ophthalmic artery. Scientific Reports 11, 18764. https://doi.org/10.1038/s41598-021-98236-w.
    • David P. Herzog*, Natarajan Perumal*, Caroline Manicam, Giulia Treccani, Jens Nadig, Milena Rossmanith, Jan Engelmann, Tanja Jene, Annika Hasch, Michael A. van der Kooij, Klaus Lieb, Nils C. Gassen, Franz H. Grus and Marianne B. Müller (2021). Longitudinal CSF proteome profiling in mice to uncover the acute and sustained mechanisms of action of rapid acting antidepressant (2R,6R)-hydroxynorketamine (HNK). Neurobiology of Stress 15: 100404. https://doi.org/10.1016/j.ynstr.2021.100404. *shared first authorship

     

    2020

    • Reinehr, S., et al., Occurrence of Retinal Ganglion Cell Loss via Autophagy and Apoptotic Pathways in an Autoimmune Glaucoma Model. Current eye research, 2020: p. 1-12.
    • Perumal, N., et al., Bioenergetic shift and actin cytoskeleton remodelling as acute vascular adaptive mechanisms to angiotensin II in murine retina and ophthalmic artery. Redox biology, 2020: p. 101597.
    • Liu, H., et al., Proteome alterations in aqueous humour of primary open angle glaucoma patients. International journal of ophthalmology, 2020. 13(1): p. 176-179.
    • Grotegut, P., et al., Minocycline reduces inflammatory response and cell death in a S100B retina degeneration model. Journal of neuroinflammation, 2020. 17(1): p. 375.
    • Beutgen, V.M., et al., Autoantigens in the trabecular meshwork and glaucoma-specific alterations in the natural autoantibody repertoire. Clinical & translational immunology, 2020. 9(3): p. e01101.
    • Bell, K., et al., Age related retinal Ganglion cell susceptibility in context of autophagy deficiency. Cell death discovery, 2020. 6: p. 21.
    • Bell, K., et al., Results from the Population-Based Gutenberg Health Study Revealing Four Altered Autoantibodies in Retinal Vein Occlusion Patients. Journal of ophthalmology, 2020. 2020: p. 8386160.

     

    2019

    • Wiesmann, N., et al., Phosphoproteome Profiling Reveals Multifunctional Protein NPM1 as part of the Irradiation Response of Tumor Cells. Transl Oncol, 2019. 12(2): p. 308-319.
    • Schmelter, C., et al., Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy. J Clin Med, 2019. 8(8).
    • Perumal, N., et al., Sample Preparation for Mass-spectrometry-based Proteomics Analysis of Ocular Microvessels. J Vis Exp, 2019(144).
    • Mann, C., et al., [Endothelial Cell Reaction to Elevated Hydrostatic Pressure and Oxidative Stress in Vitro]. Klin Monbl Augenheilkd, 2019. 236(9): p. 1122-1128.
    • Mann, C., et al., [Morphological and Quantitative Changes in Retinal and Optic Nerve Vessels in Experimental Glaucoma Model with Elevated IOP for 7 Weeks]. Klin Monbl Augenheilkd, 2019. 236(7): p. 871-876.
    • Lauzi, J., et al., Neuroprotective and neuroregenerative effects of CRMP-5 on retinal ganglion cells in an experimental in vivo and in vitro model of glaucoma. PLoS One, 2019. 14(1): p. e0207190.
    • Hampel, U., et al., Relaxin 2 fails to lower intraocular pressure and to dilate retinal vessels in rats. Int Ophthalmol, 2019. 39(4): p. 847-851.
    • Haller, N., et al., Circulating, Cell-Free DNA for Monitoring Player Load in Professional Football. Int J Sports Physiol Perform, 2019. 14(6): p. 718-726.
    • Grus, F., [Glaucoma beyond intraocular pressure : New approaches]. Ophthalmologe, 2019. 116(1): p. 4.
    • Funke, S., et al., Comparative Quantitative Analysis of Porcine Optic Nerve Head and Retina Subproteomes. Int J Mol Sci, 2019. 20(17).
    • Funke, S., et al., An In-Depth View of the Porcine Trabecular Meshwork Proteome. Int J Mol Sci, 2019. 20(10).
    • Chrysostomou, V., et al., [Visual recovery as the target for glaucoma]. Ophthalmologe, 2019. 116(1): p. 14-17.
    • Christ, M.G., et al., Sigma-1 Receptor Activation Induces Autophagy and Increases Proteostasis Capacity In Vitro and In Vivo. Cells, 2019. 8(3).
    • Chakraborty, D., et al., Enhanced autophagic-lysosomal activity and increased BAG3-mediated selective macroautophagy as adaptive response of neuronal cells to chronic oxidative stress. Redox Biol, 2019. 24: p. 101181.
    • Boerger, M., et al., Proteomic analysis of tear fluid reveals disease-specific patterns in patients with Parkinson's disease - A pilot study. Parkinsonism Relat Disord, 2019. 63: p. 3-9.
    • Beutgen, V.M., et al., Autoantibody Biomarker Discovery in Primary Open Angle Glaucoma Using Serological Proteome Analysis (SERPA). Front Immunol, 2019. 10: p. 381.
    • Bell, K., S. Funke, and F.H. Grus, [Autoimmunity and glaucoma]. Ophthalmologe, 2019. 116(1): p. 18-27.

     

    2018

    • Wessbecher, I.M., et al., DNA mismatch repair activity of MutLalpha is regulated by CK2-dependent phosphorylation of MLH1 (S477). Mol Carcinog, 2018. 57(12): p. 1723-1734.
    • Teister, J., et al., Peripapillary fluorescence lifetime reveals age-dependent changes using fluorescence lifetime imaging ophthalmoscopy in rats. Exp Eye Res, 2018. 176: p. 110-120.
    • Schmelter, C., et al., Comparison of Two Solid-Phase Extraction (SPE) Methods for the Identification and Quantification of Porcine Retinal Protein Markers by LC-MS/MS. Int J Mol Sci, 2018. 19(12).
    • Mann, C., et al., [Endothelial Cell Reaction to Elevated Hydrostatic Pressure and Oxidative Stress in Vitro]. Klin Monbl Augenheilkd, 2018.
    • Mann, C., et al., [Morphological and Quantitative Changes in Retinal and Optic Nerve Vessels in Experimental Glaucoma Model with Elevated IOP for 7 Weeks]. Klin Monbl Augenheilkd, 2018.
    • Manicam, C., et al., Proteomics Unravels the Regulatory Mechanisms in Human Tears Following Acute Renouncement of Contact Lens Use: A Comparison between Hard and Soft Lenses. Sci Rep, 2018. 8(1): p. 11526.
    • Haller, N., et al., Circulation, Cell-free DNA for Monitoring Player Load in Professional Football. Int J Sports Physiol Perform, 2018: p. 1-27.
    • Bell, K., et al., Modulation of the Immune System for the Treatment of Glaucoma. Curr Neuropharmacol, 2018. 16(7): p. 942-958.

     

    2017

    • Von Thun Und Hohenstein-Blaul, N., et al., Biomarkers for glaucoma: from the lab to the clinic. Eye (Lond), 2017. 31(2): p. 225-231.
    • Teister, J., et al., Decelerated neurodegeneration after intravitreal injection of alpha-synuclein antibodies in a glaucoma animal model. Sci Rep, 2017. 7(1): p. 6260.
    • Schmelter, C., et al., Peptides of the variable IgG domain as potential biomarker candidates in primary open-angle glaucoma (POAG). Hum Mol Genet, 2017. 26(22): p. 4451-4464.
    • Perumal, N., et al., Characterization of the human aqueous humour proteome: A comparison of the genders. PLoS One, 2017. 12(3): p. e0172481.
    • Lorenz, K., et al., A prospective, randomised, placebo-controlled, double-masked, three-armed, multicentre phase II/III trial for the Study of a Topical Treatment of Ischaemic Central Retinal Vein Occlusion to Prevent Neovascular Glaucoma - the STRONG study: study protocol for a randomised controlled trial. Trials, 2017. 18(1): p. 128.
    • Lorenz, K., et al., Course of serum autoantibodies in patients after acute angle-closure glaucoma attack. Clin Exp Ophthalmol, 2017. 45(3): p. 280-287.
    • Liu, H., et al., Hydrogen Sulfide Protects Retinal Ganglion Cells Against Glaucomatous Injury In Vitro and In Vivo. Invest Ophthalmol Vis Sci, 2017. 58(12): p. 5129-5141.
    • Laspas, P., et al., Revision of encapsulated blebs after trabeculectomy: Long-term comparison of standard bleb needling and modified needling procedure combined with transconjunctival scleral flap sutures. PLoS One, 2017. 12(5): p. e0178099.
    • Funke, S., et al., The potential impact of recent insights into proteomic changes associated with glaucoma. Expert Rev Proteomics, 2017. 14(4): p. 311-334.
    • Funke, S., et al., In-Depth Proteomic Analysis of the Porcine Retina by Use of a four Step Differential Extraction Bottom up LC MS Platform. Mol Neurobiol, 2017. 54(9): p. 7262-7275.
    • Bell, K., et al., Elevated Regulatory T Cell Levels in Glaucoma Patients in Comparison to Healthy Controls. Curr Eye Res, 2017. 42(4): p. 562-567.
    • Anders, F., et al., Intravitreal injection of beta-crystallin B2 improves retinal ganglion cell survival in an experimental animal model of glaucoma. PLoS One, 2017. 12(4): p. e0175451.
    • Anders, F., et al., Proteomic profiling reveals crucial retinal protein alterations in the early phase of an experimental glaucoma model. Graefes Arch Clin Exp Ophthalmol, 2017. 255(7): p. 1395-1407.
    • Anders, F., et al., The Small Heat Shock Protein alpha-Crystallin B Shows Neuroprotective Properties in a Glaucoma Animal Model. Int J Mol Sci, 2017. 18(11).

     

    2016

    • Von Thun Und Hohenstein-Blaul, N., et al., Autoimmune aspects in glaucoma. Eur J Pharmacol, 2016. 787: p. 105-18.
    • Perumal, N., et al., Proteomics analysis of human tears from aqueous-deficient and evaporative dry eye patients. Sci Rep, 2016. 6: p. 29629.
    • Manicam, C., et al., The Gatekeepers in the Mouse Ophthalmic Artery: Endothelium-Dependent Mechanisms of Cholinergic Vasodilation. Sci Rep, 2016. 6: p. 20322.
    • Manicam, C., et al., First insight into the proteome landscape of the porcine short posterior ciliary arteries: Key signalling pathways maintaining physiologic functions. Sci Rep, 2016. 6: p. 38298.
    • Lorenz, K., et al., Longitudinal Analysis of Serum Autoantibody-Reactivities in Patients with Primary Open Angle Glaucoma and Optic Disc Hemorrhage. PLoS One, 2016. 11(12): p. e0166813.
    • Laspas, P., et al., A New Method for Revision of Encapsulated Blebs after Trabeculectomy: Combination of Standard Bleb Needling with Transconjunctival Scleral Flap Sutures Prevents Early Postoperative Hypotony. PLoS One, 2016. 11(6): p. e0157320.
    • Gramlich, O.W., et al., Immune response after intermittent minimally invasive intraocular pressure elevations in an experimental animal model of glaucoma. J Neuroinflammation, 2016. 13(1): p. 82.
    • Funke, S., et al., Glaucoma related Proteomic Alterations in Human Retina Samples. Sci Rep, 2016. 6: p. 29759.
    • Funke, S., et al., Analysis of the effects of preservative-free tafluprost on the tear proteome. Am J Transl Res, 2016. 8(10): p. 4025-4039.
    • Bell, K., et al., Neuroprotective effects of antibodies on retinal ganglion cells in an adolescent retina organ culture. J Neurochem, 2016. 139(2): p. 256-269.

     

    2015

    • Wilding, C., et al., GFAP antibodies show protective effect on oxidatively stressed neuroretinal cells via interaction with ERP57. J Pharmacol Sci, 2015. 127(3): p. 298-304.
    • von Thun und Hohenstein-Blaul, N., et al., [Basic biochemical processes in glaucoma progression]. Ophthalmologe, 2015. 112(5): p. 395-401.
    • Strozynski, J., et al., Proteomic identification of the heterogeneous nuclear ribonucleoprotein K as irradiation responsive protein related to migration. J Proteomics, 2015. 113: p. 154-61.
    • Perumal, N., et al., Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4). Proteomics, 2015. 15(19): p. 3370-81.
    • Matheis, N., et al., Proteomics of Orbital Tissue in Thyroid-Associated Orbitopathy. J Clin Endocrinol Metab, 2015. 100(12): p. E1523-30.
    • Matheis, N., et al., Proteomics Differentiate Between Thyroid-Associated Orbitopathy and Dry Eye Syndrome. Invest Ophthalmol Vis Sci, 2015. 56(4): p. 2649-56.
    • Laspas, P., et al., Effect of the M1 Muscarinic Acetylcholine Receptor on Retinal Neuron Number Studied with Gene-Targeted Mice. J Mol Neurosci, 2015. 56(2): p. 472-9.
    • Casola, C., et al., S100 alone has the same destructive effect on retinal ganglion cells as in combination with HSP 27 in an autoimmune glaucoma model. J Mol Neurosci, 2015. 56(1): p. 228-36.
    • Bell, K., et al., Protective effect of 14-3-3 antibodies on stressed neuroretinal cells via the mitochondrial apoptosis pathway. BMC Ophthalmol, 2015. 15: p. 64.

     

    2014

    • Wilding, C., et al., gamma-Synuclein antibodies have neuroprotective potential on neuroretinal cells via proteins of the mitochondrial apoptosis pathway. PLoS One, 2014. 9(3): p. e90737.
    • Perumal, N., et al., Characterization of lacrimal proline-rich protein 4 (PRR4) in human tear proteome. Proteomics, 2014. 14(13-14): p. 1698-709.
    • Manicam, C., et al., Effective melanin depigmentation of human and murine ocular tissues: an improved method for paraffin and frozen sections. PLoS One, 2014. 9(7): p. e102512.
    • Lorenz, K., et al., Series of fibrinous inflammation after implantation of capsular tension rings. J Cataract Refract Surg, 2014. 40(2): p. 192-8.
    • Joachim, S.C., et al., Apoptotic retinal ganglion cell death in an autoimmune glaucoma model is accompanied by antibody depositions. J Mol Neurosci, 2014. 52(2): p. 216-24.
    • Gramlich, O.W., et al., Dynamics, alterations, and consequences of minimally invasive intraocular pressure elevation in rats. Invest Ophthalmol Vis Sci, 2014. 55(1): p. 600-11.
    • Gramlich, O.W., et al., Catestatin-like immunoreactivity in the rat eye. Neuropeptides, 2014. 48(1): p. 7-13.
    • Bell, K., N. Pfeiffer, and F.H. Grus, [Pharmacokinetics of the anterior eye]. Ophthalmologe, 2014. 111(2): p. 107-12.

     

    2013

    • von Thun Und Hohenstein-Blaul, N., S. Funke, and F.H. Grus, Tears as a source of biomarkers for ocular and systemic diseases. Exp Eye Res, 2013. 117: p. 126-37.
    • Pfeiffer, N., et al., Neuroprotection of medical IOP-lowering therapy. Cell Tissue Res, 2013. 353(2): p. 245-51.
    • Lu, Y., et al., Genome-wide association analyses identify multiple loci associated with central corneal thickness and keratoconus. Nat Genet, 2013. 45(2): p. 155-63.
    • Korb, C., et al., Serum protein analysis of patients with different vitreoretinal diseases by means of antibody microarrays. Investigative Ophthalmology & Visual Science, 2013. 54(15): p. 3332-3332.
    • Joachim, S.C., et al., Immune response against ocular tissues after immunization with optic nerve antigens in a model of autoimmune glaucoma. Mol Vis, 2013. 19: p. 1804-14.
    • Gramlich, O.W., et al., Autoimmune biomarkers in glaucoma patients. Curr Opin Pharmacol, 2013. 13(1): p. 90-7.
    • Gramlich, O.W., et al., Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One, 2013. 8(2): p. e57557.
    • Boehm, N., et al., Alterations in the tear proteome of dry eye patients--a matter of the clinical phenotype. Invest Ophthalmol Vis Sci, 2013. 54(3): p. 2385-92.
    • Bhattacharya, S.K., et al., Molecular biomarkers in glaucoma. Invest Ophthalmol Vis Sci, 2013. 54(1): p. 121-31.
    • Bell, K., et al., Does autoimmunity play a part in the pathogenesis of glaucoma? Prog Retin Eye Res, 2013. 36: p. 199-216.

     

    2012

    • Matheis, N., et al., Proteomics of tear fluid in thyroid-associated orbitopathy. Thyroid, 2012. 22(10): p. 1039-45.
    • Lorenz, K., et al., GE-25-like immunoreactivity in the rat eye. Peptides, 2012. 36(2): p. 286-91.
    • Korb, C.A., et al., Intraindividual Proteomic Comparison of Human Tears and Vitreous in Patients With Different Vitreoretinal Diseases by Means of Antibody Microarrays. Investigative Ophthalmology & Visual Science, 2012. 53(14): p. 888-888.
    • Joachim, S.C., et al., Effect of ischemia duration on autoantibody response in rats undergoing retinal ischemia-reperfusion. Ophthalmic Res, 2012. 48(2): p. 67-74.
    • Joachim, S.C., et al., Retinal ganglion cell loss is accompanied by antibody depositions and increased levels of microglia after immunization with retinal antigens. PLoS One, 2012. 7(7): p. e40616.
    • Hohenstein-Blaul, N.v.T.u., et al., Proteomic Analysis of Tears in Patients with Various Ocular Diseases using Antibody Microarrays. Investigative Ophthalmology & Visual Science, 2012. 53(14): p. 4238-4238.
    • Hoehn, R., et al., Population-based meta-analysis in Caucasians confirms association with COL5A1 and ZNF469 but not COL8A2 with central corneal thickness. Hum Genet, 2012. 131(11): p. 1783-93.
    • Funke, S., et al., Longitudinal analysis of taurine induced effects on the tear proteome of contact lens wearers and dry eye patients using a RP-RP-Capillary-HPLC-MALDI TOF/TOF MS approach. J Proteomics, 2012. 75(11): p. 3177-90.
    • Bohm, D., et al., Comparison of tear protein levels in breast cancer patients and healthy controls using a de novo proteomic approach. Oncol Rep, 2012. 28(2): p. 429-38.
    • Boehm, N., et al., New insights into autoantibody profiles from immune privileged sites in the eye: a glaucoma study. Brain Behav Immun, 2012. 26(1): p. 96-102.
    • Bell, K., et al., Serum and antibodies of glaucoma patients lead to changes in the proteome, especially cell regulatory proteins, in retinal cells. PLoS One, 2012. 7(10): p. e46910.
    • Bell, K., et al., Comparison of the effects of different lens-cleaning solutions on the protein profiles of human conjunctival cells. Graefes Arch Clin Exp Ophthalmol, 2012. 250(11): p. 1627-36.

     

    2011

    • Weis, E., et al., Reduced mRNA and protein expression of the genomic caretaker RAD9A in primary fibroblasts of individuals with childhood and independent second cancer. PLoS One, 2011. 6(10): p. e25750.
    • Thiel, U.J., et al., Analysis of differentially expressed proteins in oral squamous cell carcinoma by MALDI-TOF MS. J Oral Pathol Med, 2011. 40(5): p. 369-79.
    • Lorenz, K., et al., PE-11, a peptide derived from chromogranin B, in the rat eye. Peptides, 2011. 32(6): p. 1201-6.
    • Laspas, P., et al., Autoreactive antibodies and loss of retinal ganglion cells in rats induced by immunization with ocular antigens. Invest Ophthalmol Vis Sci, 2011. 52(12): p. 8835-48.
    • Kramann, C., et al., Effect of contact lenses on the protein composition in tear film: a ProteinChip study. Graefes Arch Clin Exp Ophthalmol, 2011. 249(2): p. 233-43.
    • Joachim, S.C., et al., Upregulation of antibody response to heat shock proteins and tissue antigens in an ocular ischemia model. Invest Ophthalmol Vis Sci, 2011. 52(6): p. 3468-74.
    • Grus, F.H. and O.W. Gramlich, [Autoimmunity and glaucoma]. Klin Monbl Augenheilkd, 2011. 228(5): p. 439-45.
    • Gramlich, O.W., et al., Ophthalmopathology in rats with MBP-induced experimental autoimmune encephalomyelitis. Graefes Arch Clin Exp Ophthalmol, 2011. 249(7): p. 1009-20.
    • Gericke, A., et al., Identification of the muscarinic acetylcholine receptor subtype mediating cholinergic vasodilation in murine retinal arterioles. Invest Ophthalmol Vis Sci, 2011. 52(10): p. 7479-84.
    • Bohm, D., et al., Serum proteome profiling of primary breast cancer indicates a specific biomarker profile. Oncol Rep, 2011. 26(5): p. 1051-6.
    • Bohm, D., et al., Antibody microarray analysis of the serum proteome in primary breast cancer patients. Cancer Biol Ther, 2011. 12(9): p. 772-9.
    • Boehm, N., et al., Proinflammatory cytokine profiling of tears from dry eye patients by means of antibody microarrays. Invest Ophthalmol Vis Sci, 2011. 52(10): p. 7725-30.

     

    2010

    • Joachim, S.C., et al., Enhanced characterization of serum autoantibody reactivity following HSP 60 immunization in a rat model of experimental autoimmune glaucoma. Curr Eye Res, 2010. 35(10): p. 900-8.
    • Grus, F.H., [Relationship between oxidatve stress and autoimmunity in glaucoma]. Klin Monbl Augenheilkd, 2010. 227(2): p. 114-9.
    • Cuny, C.S., et al., Repeated intraocular pressure measurement in awake Lewis rats does not bias retinal ganglion cell survival. Curr Eye Res, 2010. 35(11): p. 1034-9.

     

    2009

    • Okrojek, R., et al., Proteomics in autoimmune thyroid eye disease. Horm Metab Res, 2009. 41(6): p. 465-70.
    • Lebrecht, A., et al., Diagnosis of breast cancer by tear proteomic pattern. Cancer Genomics Proteomics, 2009. 6(3): p. 177-82.
    • Lebrecht, A., et al., Surface-enhanced Laser Desorption/Ionisation Time-of-flight Mass Spectrometry to Detect Breast Cancer Markers in Tears and Serum. Cancer Genomics Proteomics, 2009. 6(2): p. 75-83.
    • Kramann, C.A., et al., Proteomic Analysis of Tears in Patients With Dry and Exsudative Age-Related Macular Degeneration. Investigative Ophthalmology & Visual Science, 2009. 50(13): p. 737-737.
    • Joachim, S.C., et al., Complex antibody profile changes in an experimental autoimmune glaucoma animal model. Invest Ophthalmol Vis Sci, 2009. 50(10): p. 4734-42.
    • Gericke, A., et al., Cholinergic responses of ophthalmic arteries in M3 and M5 muscarinic acetylcholine receptor knockout mice. Invest Ophthalmol Vis Sci, 2009. 50(10): p. 4822-7.

     

    2008

    • Reichelt, J., et al., Analysis of autoantibodies against human retinal antigens in sera of patients with glaucoma and ocular hypertension. Curr Eye Res, 2008. 33(3): p. 253-61.
    • Joachim, S.C., et al., Sera of glaucoma patients show autoantibodies against myelin basic protein and complex autoantibody profiles against human optic nerve antigens. Graefes Arch Clin Exp Ophthalmol, 2008. 246(4): p. 573-80.
    • Grus, F.H., et al., Autoimmunity and glaucoma. J Glaucoma, 2008. 17(1): p. 79-84.
    • Grus, F.H., et al., Transthyretin and complex protein pattern in aqueous humor of patients with primary open-angle glaucoma. Mol Vis, 2008. 14: p. 1437-45.
    • Grus, F. and D. Sun, Immunological mechanisms in glaucoma. Semin Immunopathol, 2008. 30(2): p. 121-6.
    • Geerling, G., et al., [Legal regulations to produce serum eye drops : when is it necessary, and how can it be obtained?]. Ophthalmologe, 2008. 105(7): p. 632-8.
    • Brust, A.K., et al., Effects of Cyclooxygenase Inhibitors on Apoptotic Neuroretinal Cells. Biomark Insights, 2008. 3: p. 387-402.

     

    2007

    • Joachim, S.C., et al., IgG antibody patterns in aqueous humor of patients with primary open angle glaucoma and pseudoexfoliation glaucoma. Mol Vis, 2007. 13: p. 1573-9.
    • Joachim, S.C., et al., Analysis of IgG antibody patterns against retinal antigens and antibodies to alpha-crystallin, GFAP, and alpha-enolase in sera of patients with "wet" age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol, 2007. 245(5): p. 619-26.
    • Joachim, S.C., et al., Antibodies to alpha B-crystallin, vimentin, and heat shock protein 70 in aqueous humor of patients with normal tension glaucoma and IgG antibody patterns against retinal antigen in aqueous humor. Curr Eye Res, 2007. 32(6): p. 501-9.
    • Grus, F.H., S.C. Joachim, and N. Pfeiffer, Proteomics in ocular fluids. Proteomics Clin Appl, 2007. 1(8): p. 876-88.

     

    2006

    • Hoffmann, E.M., et al., [Goldmann applanation tonometry and dynamic contour tonometry. Comparison of intraocular pressure measurements in the course of product certification according to EN ISO 8612:2001]. Ophthalmologe, 2006. 103(4): p. 317-20.
    • Hoffmann, E.M., et al., Repeatability and reproducibility of optic nerve head topography using the retinal thickness analyzer. Graefes Arch Clin Exp Ophthalmol, 2006. 244(2): p. 192-8.
    • Hoffmann, E.M., et al., Glaucoma detection using the GDx nerve fiber analyzer and the retinal thickness analyzer (RTA). Eur J Ophthalmol, 2006. 16(2): p. 251-8.
    • Grus, F.H., et al., Serum autoantibodies to alpha-fodrin are present in glaucoma patients from Germany and the United States. Invest Ophthalmol Vis Sci, 2006. 47(3): p. 968-76.
    • Barleon, L., et al., Comparison of dynamic contour tonometry and goldmann applanation tonometry in glaucoma patients and healthy subjects. Am J Ophthalmol, 2006. 142(4): p. 583-90.

     

    2005

    • Joachim, S.C., N. Pfeiffer, and F.H. Grus, Autoantibodies in patients with glaucoma: a comparison of IgG serum antibodies against retinal, optic nerve, and optic nerve head antigens. Graefes Arch Clin Exp Ophthalmol, 2005. 243(8): p. 817-23.
    • Hoffmann, E.M., et al., [Laser in situ keratomileusis (LASIK) and scanning laser ophthalmoscopy]. Ophthalmologe, 2005. 102(9): p. 856-62.
    • Hoffmann, E.M., et al., Scanning laser polarimetry and retinal thickness analysis before and after laser in situ keratomileusis. Eur J Ophthalmol, 2005. 15(4): p. 434-40.
    • Hoffmann, E.M., et al., Agreement among 3 optical imaging methods for the assessment of optic disc topography. Ophthalmology, 2005. 112(12): p. 2149-56.
    • Hoffmann, E., et al., Scanning laser polarimetry and retinal thickness analysis before and after laser in situ keratomileusis. Eur J Ophthalmol, 2005. 15(4): p. 434-440.
    • Grus, F.H., et al., SELDI-TOF-MS ProteinChip array profiling of tears from patients with dry eye. Invest Ophthalmol Vis Sci, 2005. 46(3): p. 863-76.
    • Grus, F.H., et al., Effects of multipurpose contact lens solutions on the protein composition of the tear film. Cont Lens Anterior Eye, 2005. 28(3): p. 103-12.

     

    2004

    • Troost, A., et al., [Agreement between clinical evaluation, Heidelberg-Retina-Tomograph (HRT) and Nerve Fiber Analyzer (GDx) in glaucoma diagnosis]. Klin Monbl Augenheilkd, 2004. 221(9): p. 757-61.
    • Singer, H.S., et al., Anti-basal ganglia antibodies in PANDAS. Mov Disord, 2004. 19(4): p. 406-15.
    • Hoffmann, E.M., F.H. Grus, and N. Pfeiffer, Intraocular pressure and ocular pulse amplitude using dynamic contour tonometry and contact lens tonometry. BMC Ophthalmol, 2004. 4: p. 4.
    • Grus, F.H., et al., Complex autoantibody repertoires in patients with glaucoma. Mol Vis, 2004. 10: p. 132-7.

     

    2003

    • Singer, H.S., et al., Anti-basal ganglia antibody abnormalities in Sydenham chorea. J Neuroimmunol, 2003. 136(1-2): p. 154-61.
    • Joachim, S.C., F.H. Grus, and N. Pfeiffer, Analysis of autoantibody repertoires in sera of patients with glaucoma. Eur J Ophthalmol, 2003. 13(9-10): p. 752-8.
    • Grus, F.H., S.C. Joachim, and N. Pfeiffer, Analysis of complex autoantibody repertoires by surface-enhanced laser desorption/ionization-time of flight mass spectrometry. Proteomics, 2003. 3(6): p. 957-61.
    • Grus, F.H., et al., Immunological effects of allopurinol in the treatment of experimental autoimmune uveitis (EAU) after onset of the disease. Eur J Ophthalmol, 2003. 13(2): p. 185-91.
    • Fust, A., et al., Changes in tear protein pattern after photorefractive keratectomy. Eur J Ophthalmol, 2003. 13(6): p. 525-31.

     

    2002

    • Schwenn, O., et al., Ocular pulse amplitude in patients with open angle glaucoma, normal tension glaucoma, and ocular hypertension. Br J Ophthalmol, 2002. 86(9): p. 981-4.
    • Herber, S., et al., Changes in the tear protein patterns of diabetic patients using two-dimensional electrophoresis. Adv Exp Med Biol, 2002. 506(Pt A): p. 623-6.
    • Grus, F.H., et al., Analysis of tear protein patterns for the diagnosis of dry eye. Adv Exp Med Biol, 2002. 506(Pt B): p. 1213-6.
    • Grus, F.H., et al., Changes in the tear proteins of diabetic patients. BMC Ophthalmol, 2002. 2: p. 4.
    • Grus, F.H., et al., Effect of smoking on tear proteins. Graefes Arch Clin Exp Ophthalmol, 2002. 240(11): p. 889-92.

     

    2001

    • Wendlandt, J.T., et al., Striatal antibodies in children with Tourette's syndrome: multivariate discriminant analysis of IgG repertoires. J Neuroimmunol, 2001. 119(1): p. 106-13.
    • Vogel, A., et al., [Reproducibility of measurement of ocular pulse amplitude and intraocular pressure using Smartlens]. Ophthalmologe, 2001. 98(10): p. 944-9.
    • Troost, R., et al., Clinical comparison of two intraocular pressure measurement methods: SmartLens dynamic observing tonography versus Goldmann. Graefes Arch Clin Exp Ophthalmol, 2001. 239(12): p. 889-92.
    • Herber, S., et al., Two-dimensional analysis of tear protein patterns of diabetic patients. Electrophoresis, 2001. 22(9): p. 1838-44.
    • Grus, F.H., P. Sabuncuo, and A.J. Augustin, [Quantitative analysis of tear protein profile for soft contact lenses--a clinical study]. Klin Monbl Augenheilkd, 2001. 218(4): p. 239-42.
    • Grus, F.H., P. Sabuncuo, and A.J. Augustin, Analysis of tear protein patterns of dry-eye patients using fluorescent staining dyes and two-dimensional quantification algorithms. Electrophoresis, 2001. 22(9): p. 1845-50.
    • Grus, F.H., et al., Analysis of the antibody repertoire in tears of dry-eye patients. Ophthalmologica, 2001. 215(6): p. 430-4.
    • Grus, F.H., et al., [From the genome to the proteome]. Ophthalmologe, 2001. 98(12): p. 1132-7.
    • Grus, F.H., et al., Allopurinol has immunomodulating activity following topical and systemic application in experimental autoimmune uveitis. Eur J Ophthalmol, 2001. 11(3): p. 252-60.
    • Grus, F.H. and A.J. Augustin, High performance liquid chromatography analysis of tear protein patterns in diabetic and non-diabetic dry-eye patients. Eur J Ophthalmol, 2001. 11(1): p. 19-24.
    • Frohn, A., et al., Late opacification of the foldable hydrophilic acrylic lens SC60B-OUV. Ophthalmology, 2001. 108(11): p. 1999-2004.
    • Dziewas, R., et al., Antibody pattern analysis in the Guillain-Barre syndrome and pathologic controls. J Neuroimmunol, 2001. 119(2): p. 287-96.

     

    2000

    • Grus, F.H., et al., [Immunological effect of systemically administered allopurinol in experimental autoimmune uveitis]. Klin Monbl Augenheilkd, 2000. 216(3): p. 165-71.
    • Grus, F.H. and A.J. Augustin, [Protein analysis methods in diagnosis of sicca syndrome]. Ophthalmologe, 2000. 97(1): p. 54-61.

     

    1999

    • Grus, F.H. and A.J. Augustin, Analysis of tear protein patterns by a neural network as a diagnostical tool for the detection of dry eyes. Electrophoresis, 1999. 20(4-5): p. 875-80.
    • Augustin, A.J., et al., Effects of systemically applied allopurinol and prednisolone on experimental autoimmune uveitis. Graefes Arch Clin Exp Ophthalmol, 1999. 237(6): p. 508-12.

     

    1998

    • Grus, F.H. and H. Stieve, Kinetics of rhodopsin regeneration in situ and in the excised median eye of Limulus polyphemus measured using electrophysiological methods. Pflugers Arch, 1998. 435(6): p. 827-33.
    • Grus, F.H., A.J. Augustin, and K. Toth-Sagi, Diagnostic classification of autoantibody repertoires in endocrine ophthalmopathy using an artificial neural network. Ocul Immunol Inflamm, 1998. 6(1): p. 43-50.
    • Grus, F.H., et al., Analysis of tear-protein patterns as a diagnostic tool for the detection of dry eyes. Eur J Ophthalmol, 1998. 8(2): p. 90-7.
    • Grus, F.H. and A.J. Augustin, Analysis of the IgG autoantibody repertoire in endocrine ophthalmopathy using the MegaBlot technique. Curr Eye Res, 1998. 17(6): p. 636-41.
    • Augustin, A.J., et al., Effects of perfluorooctylbromide and vitamin E on ischemia induced retinal oxidative tissue damage. Exp Eye Res, 1998. 66(1): p. 19-24.
    • Armstrong, D., et al., Detection of vascular endothelial growth factor and tumor necrosis factor alpha in epiretinal membranes of proliferative diabetic retinopathy, proliferative vitreoretinopathy and macular pucker. Ophthalmologica, 1998. 212(6): p. 410-4.

     

    1997

    • Grus, F.H. and C.W. Zimmermann, Identification and classification of autoantibody repertoires (Western blots) with a pattern recognition algorithm by an artificial neural network. Electrophoresis, 1997. 18(7): p. 1120-5.
    • Grus, F.H., et al., Immunomodulating activity of allopurinol in experimental lens-induced uveitis. Graefes Arch Clin Exp Ophthalmol, 1997. 235(2): p. 118-23.
    • Grus, F.H., A.J. Augustin, and C.W. Zimmermann, Computer-supported analysis (MegaBlot) of allopurinol-induced changes in the autoantibody repertoires of rats suffering from experimental lens-induced uveitis. Electrophoresis, 1997. 18(3-4): p. 516-9.
    • Augustin, A.J., et al., Detection of eicosanoids in epiretinal membranes of patients suffering from proliferative vitreoretinal diseases. Br J Ophthalmol, 1997. 81(1): p. 58-60.

     

    1996

    • Koch, F.H., et al., Effects of different antioxidants on lens-induced uveitis. Ger J Ophthalmol, 1996. 5(4): p. 185-8.
    • Blumenroder, S., et al., Retino-choroidal oxygen imaging through a fundus camera. Adv Exp Med Biol, 1996. 388: p. 35-9.
    • Augustin, A.J., et al., Effects of allopurinol and steroids on inflammation and oxidative tissue damage in experimental lens induced uveitis: a biochemical and morphological study. Br J Ophthalmol, 1996. 80(5): p. 451-7.
    • Augustin, A.J., F.H. Grus, and S. Hunt, Effects of allopurinol on free-radical-induced reduction of the proliferation of retinal pigment epithelial cells. Doc Ophthalmol, 1996. 93(3): p. 231-6.

     

    1995

    • Zimmermann, C.W., F.H. Grus, and R. Dux, Multivariate statistical comparison of autoantibody-repertoires (western blots) by discriminant analysis. Electrophoresis, 1995. 16(6): p. 941-7.
    • Breipohl, W., et al., Effects of UV-B on the growth pattern of bovine passage I and II lens epithelial cells in vitro. Ophthalmic Res, 1995. 27 Suppl 1: p. 62-8.
    • Augustin, A.J., et al., Indicators of oxidative tissue damage and inflammatory activity in epiretinal membranes of proliferative diabetic retinopathy, proliferative vitreoretinopathy and macular pucker. Ger J Ophthalmol, 1995. 4(1): p. 47-51.
    • Augustin, A.J., et al., Oxidative reactions in the tear fluid of patients suffering from dry eyes. Graefes Arch Clin Exp Ophthalmol, 1995. 233(11): p. 694-8.

     

    Microarray

     

    Prof. Dr. Dr. F. Grus, PhD, MD
    Dr. N. Perumal, PhD
    Jeff Kristian Nzogang Fomo, M. Sc. 
    K. Träger, M. Sc., MTA

     

    Protein Microarray techniques

    Besides the up- and down regulation of specific proteins, a change in the repertoire or the expression level of autoimmune antibodies can also play an important role in the pathogenesis of diseases. A recently developed and already widely used method to analyse these shiftings is the protein microarray approach. This technique allows a fast simultaneous screening of scores of patients’ samples for differences in specific antibody or antigen patterns by visualization of antibody-antigen or protein-protein interactions on small spotted slides.

    The output of these analyses may lead to the identification of potential biomarkers or validate results already obtained by other approaches such as the protein profiling via magnetic beads or the SELDI-TOF ProteinChip technology.

     

    Fig. 1: Workflow and principle of protein microarray technology.

     

    Protein microarrays

    In the approach we use, patients’ body fluids, such as sera, tear fluid or aqueous humor are screened for subsets of antibodies against specific antigens of interest, in order to detect potential, disease related differences in antibody-antigen interactions (see fig.1). The protein array slides are prepared by spotting highly purified antigens onto special nitrocellulose-coated slides. Due to the high spotting density hundreds of different antigens can be tested on each customized protein microarray slide, allowing large scale screening studies. In order to capture antigen-specific antibodies, the arrays are incubated with the body fluids. Then the arrays are treated with a secondary fluorescence labeled antibody (Cy3, Cy5) for visualizing the antibody-antigen interactions. Subsequently, slides are scanned with a high-resolution-convocal-scanner whereby the fluorescence signals emitting from the secondary antibodies are digitized. In order to compare spot signals and to detect potential biomarkers we are using a combination of different algorithms for data normalization and a set of diverse statistical techniques, such as artificial neural networks, multivariate statistics and tree algorithms.

     

    Antibody microarrays

    In this approach antibodies instead of antigens are spotted onto nitrocellulose coated slides and the arrays are incubated with patients’ body fluids for capturing antigens of interest. For the purpose of using a high resolution convocal laser scanner, proteins are labeled with a fluorescence dye (Cy3, Cy5) prior to the incubation with the body fluid. The subsequent data analysis and the statistical evaluation are based on the same algorithms and techniques as described for protein microarrays.The advantage of this technique is a rapid confirmation of potential biomarkers obtained from other clinical studies in a high throughput compatible manner. Furthermore it is possible to flexibly screen for high quantities of putative biomarkers.

    Immunoproteomics profiling

     

    Prof. Dr. Dr. F. Grus, PhD, MD

    Dr. N. Perumal, PhD 

    Jeff Kristian Nzogang Fomo, M. Sc.  

     

    Sichang Gu, Master of Ophthalmology

    J. Heyne, M.Sc.

    K. Träger, M. Sc., MTA

     

    Immunoproteomics profiling

    The up- and down regulation of proteins can provide important informations about disease processes and can lead to a better understanding of the pathogenesis. This process might identify important biomarkers of the disease and thus will lead to predictive medicine.

    Beside conventional two-dimensional electrophoresis, our group is using the Seldi-TOF (surface enhanced laser desorption and ionization in time-of-flight mass spectrometry) ProteinChip. Furthermore, we have state-of-the technologies in our proteomics unit in our lab. This includes a Maldi-TOFTOF (Bruker Ultraflex), different robots for sample preparation, HPLC and nano-HPLC systems coupled to automated Maldi-Target spotting, and Protein Microarray.

    Recently, we could use this technology to find biomarkers for dry-eye disease (s. News section).

    Bead Approach

    Previous studies on antibodies in glaucoma showed that there exist complex IgG antibody repertoires and significant different patterns of antibodies against ocular antigens between glaucoma patients and normal subjects, using Western blotting.
    Immunodetection after Western Blotting can effectively detect specific antibody reactivity in a given sample. However, this technique is time consuming, it is hard to eliminate blot-to-blot variation, and it has a limitation in sensitivity when used for mass screening of many samples simultaneously. In comparison, a bead-based assay could capture immunoglobulins for downstream immunoprecipitation of a wide range of proteins (from a large amount of samples) or other antigens, such as retina components, in a short period of time. This method has less variation, and is more sensitive, since proteins are detected by mass spectrometry (MS). Therefore, we are also working with a bead-based antibody assay (figure 1).


    Figure 1: Protein G bead experiment: magnetic Protein G beads were incubated with serum samples in order to bind serum antibodies to the bead. These complexes were incubated with the retinal antigens. The bound antigens were eluted through pH shift and the elutions were measured by mass spectrometry.

    Protein Microarrays

    See Microarray Section.

    Western Blotting

    Aim of one of our current studies is to analyze the complex IgG autoantibody patterns against human retinal and optic nerve antigens in patients with glaucoma. Since previous studies used mainly bovine antigens, we are trying to show that the different antibody profiles between glaucoma patients and healthy subjects are truly autoantibodies and the complex profiles are not only based on cross-reactivities with non-human antigens.
    Serum samples from several groups will be analyzed in this project:

    • Non-glaucomatous healthy control subjects (CO)
    • Primary open-angle glaucoma subjects (POAG)
    • Subjects with ocular hypertension (OHT)
    • Normal tension glaucoma patients (NTG)
     



    Figure 2. Examples of Western blots made visible by 4-chloro-1-naphtol staining. There are complex IgG autoantibody patterns in all four groups: healthy subjects (CO), patients with primary open-angle glaucoma (POAG), ocular hypertension (OHT), and normal tension glaucoma (NTG). Each lane was incubated with patient serum (diluted 1:40) as first antibody and goat anti-human IgG (diluted 1:500) as secondary antibody.

    Figure 3 shows the synopsis of complex antibody profiles for all three groups. The mean antibody reactivity is plotted against the corresponding molecular weight (in kDa). A significant difference can be seen between autoantibody profiles of the POAG and the CO group (P=0.0040, Mahalanobis distance=1.03), between the NTG group and the control group (P=0.000035, Mahalanobis distance=1.63), and also between the POAG and NTG group (P=0.021).

     


    Figure 3: Synopsis of antibody profiles against human optic nerve antigens. The mean antigen-antibody-reactivity of patients with primary open-angle glaucoma (POAG), normal tension glaucoma (NTG), and control subjects (CO) is plotted against the corresponding molecular weight of the optic nerve antigens. The x-axis shows the molecular weight of the antigen-antibody-reactivity in Kilodalton (kDa).

    We could detect complex IgG autoantibody repertoires against human optic nerve antigens (see figure 2) and significant differences (P<0.05) could be shown among the profiles of all groups (POAG, NTG, and CO). In accordance with studies using bovine optic nerve antigens we did not only find up-regulated antibody reactivities in the glaucoma groups of this project, but also down-regulated areas.
    At around 16 kDa a significant difference between the antibody reactivity of the three groups could be seen (P=0.029). The POAG and the NTG group showed an up-regulation in this area in comparison to the control group. The corresponding antigen was identified as myelin basic protein (MBP). MBP is a trans-membrane protein which plays an important role in the myelination process in the central and peripheral nervous system.

     

    Recent publications

    • Beutgen VM, Pfeiffer N, Grus FH (2021) Serological Levels of Anti-clathrin Antibodies Are Decreased in Patients With Pseudoexfoliation Glaucoma. Frontiers in immunology 12:616421.
    • Beutgen VM, Schmelter C, Pfeiffer N, Grus FH (2020) Autoantigens in the trabecular meshwork and glaucoma-specific alterations in the natural autoantibody repertoire. Clin Transl Immunology 9:e01101.
    • Liu H, Anders F, Funke S, Mercieca K, Grus F, Prokosch V (2020) Proteome alterations in aqueous humour of primary open angle glaucoma patients. International journal of ophthalmology 13:176-179.
    • Schmelter C, Fomo KN, Perumal N, Manicam C, Bell K, Pfeiffer N, Grus FH (2019) Synthetic Polyclonal-Derived CDR Peptides as an Innovative Strategy in Glaucoma Therapy. J Clin Med 8.
    • Beutgen VM, Perumal N, Pfeiffer N, Grus FH (2019) Autoantibody Biomarker Discovery in Primary Open Angle Glaucoma Using Serological Proteome Analysis (SERPA). Front Immunol 10:381.
    • Bell K, Funke S, Grus FH (2019) [Autoimmunity and glaucoma]. Ophthalmologe 116:18-27.
    • Schmelter C, Perumal N, Funke S, Bell K, Pfeiffer N, Grus FH (2017) Peptides of the variable IgG domain as potential biomarker candidates in primary open-angle glaucoma (POAG). Hum Mol Genet 26:4451-4464.

     

    Proteomics Core Unit

     

    Prof. Dr. Dr. F. Grus, MD, PhD
    Dr. N. Perumal, PhD

     

    Mass spectrometry based proteomics

    The up- and down regulation of proteins can provide important information on disease processes and can lead to a better understanding of the pathogenesis. Mass spectrometry based profiling approaches lead to the identification of important biomarkers for diseases and thus support diagnostics and predictive medical approaches.Besides conventional two-dimensional electrophoresis, our group uses state of the art technologies such as the SELDI-TOF MS (Surface Enhanced Laser Desorption/Ionization in Time-of-Flight Mass Spectrometry) ProteinChip technology or a superparamagnetic nanoparticel bead approach in a fully automated robot station. For MS analyses we use a MALDI-TOFTOF (Matrix Assisted Laser Desorption/Ionisation in Time-of-Flight; Bruker Ultraflex) mass spectrometer. Additional sample preparation, which might be necessary for biomarker identification, is performed using HPLC and nano-HPLC systems coupled with automated MALDI target spotting. Subsequently, protein microarrays are used for the validation of potential biomarkers.MS data are analysed with a specific software (protein software project, PSP), which was developed in our group. PSP searches for possible biomarkers using a combination of different algorithms such as artificial neural networks, multivariate statistics and tree algorithms.

    Protein profiling by the use of magnetic beads

    In a high throughput compatible approach we use superparamagnetic nanoparticels (Dynal, Bruker Daltonics) covered with different specialized chromatographic coatings for the prefractionation of the proteome of complex body fluids such as sera or tears. Sample fluids are incubated with the magnetic nanoparticels (beads) in order to capture a specific fraction of proteins, which will be eluted and spotted onto a MALDI-target. This step is necessary to allow an ultra high resolution MALDI-TOFTOF analysis, which is otherwise not feasible due to the high complexity of the samples. The processing provides much deeper insights into the proteome than common methods like 1D or 2D gelelectrophoresis. As a further benefit we decrease the day to day variability and thus increase the reproducibility of the MS spectra by use of liquid handling robots (Tecan and Beckmann robots), both for magnetic bead handling and MALDI Spotting.The wide scope on available bead coatings such as WCX, SAX, C18, C8 etc. allows a step by step proteome profiling resulting in a high increase of information. Recently beads for phospho- and glycoprotein isolation have been developed. This seems to be a very promising approach specifically for the analysis of disease correlated posttranslational protein modifications.

    Animal Model

     

    Prof. Dr. Dr. Franz Grus, PhD, MD
    Dr. Caroline Manicam, PhD
    Sichang Gu, Master of Ophthalmology 
    Linglin Zhang, Master of Ophthalmology
    Chaoqiang Guan, Master of Ophthalmology

     

    The Experimental Ophthalmology unit conducts several projects involving glaucoma or AMD models.

    Methods:

    • Histology of different tissues (e.g. retina, optic nerve, brain) using light and fluorescence microscopy
    • Ophthalmologic Examinations (e.g. IOP measurement, fundus examination, OCT)
    • Intravitreal injection of therapeutic compounds
    • Proteomics using mass spectrometry 
    • Immunoproteomics using Western blotting (1D and 2D) und antigen microarray

     

    Experimental Autoimmune Glaucoma Model

    During the last years an autoimmune involvement has been discussed in the pathogenesis of glaucoma. In several studies we could show significant differences in antibody profiles of glaucoma patients in comparison to healthy subjects. These antibody patterns provide hints for changes in the autoimmunity in glaucoma patients, but this does not necessarily mean that glaucoma is an autoimmune disease.
    Are these antibodies an epiphenomenon or are some of them causative at least in a subset of glaucoma patients?
    In order to test the hypothesis that autoimmunity can be involved in the pathogenesis of glaucoma, we are developed an animal model of Experimental Autoimmune Glaucoma (EAG).
    Similar to the procedures used in autoimmune uveitis (EAU) or experimental autoimmune encephalitis (EAE), we immunize the animals with possible antigens (previously identified in glaucoma patients) and then investigate possible subsequent ganglion cell loss and antibody binding.
     
     

    Optic Nerve Crush Model

    We are analyzing the immunological modifications of the complex antibody profiles in the nerve crush animal model. Histological analyses of the retina and optic nerve will be performed to find out if retinal ganglion cell loss occurs in these animals.
    Studies suggest that beneficial T cell-dependent immunity is a physiological response to CNS trauma partially counteracting the trauma-induced damage during nerve crush. But there is no knowledge about the modifications of the antibody profiles after optic nerve crush.
    Because of the small blood and aqueous humor sample volumes in animals we developed a method to detect antibody-antigen-reactivities through Protein G beads and ProteinChip technology.
     

    Ischemia Reperfusion Model

    Immunological modifications of the complex antibody profiles in a ischemia reperfusion model are also currently examined. And compared to findings in the Experimental Autoimmune Glaucoma Model.
     
    Effect of muscarinic receptor subtypes on the cholinergic responsiveness of ocular vessels:
    Acetylcholine regulates perfusion of numerous organs via changes in local blood flow involving muscarinic receptor-induced release of nitric oxide. Five muscarinic acetylcholine receptor subtypes, denoted M1 through M5, have been identified. In ocular arteries, expression and functional relevance of muscarinic receptors remains unknown at present. The purpose of our research project is to determine the expression pattern of muscarinic receptor subtypes in retinal and ciliar arteries in humans and mice. Another major focus of our project is to investigate the impact of muscarinic receptors on vascular responses using in vitro ocular vascular preparations.
    These projects are supported in part by Boehringer Ingelheim Stiftung, Grimmke Stiftung, MAIFOR (Universitätsmedizin), Gertrud Kusen-Stiftung, and others.
     

     

    Most recent publications:

    • Hu J, Sisignano M, Brecht R, Perumal N, Angioni C, Bibli IS, Fisslthaler B, Kleinert H, Pfeiffer N, Fleming I, Manicam C (2021) Cyp2c44 epoxygenase-derived epoxyeicosatrienoic acids in vascular smooth muscle cells elicit vasoconstriction of the murine ophthalmic artery. Sci Rep 11:18764.
    • Herzog DP, Perumal N, Manicam C, Treccani G, Nadig J, Rossmanith M, Engelmann J, Jene T, Hasch A, van der Kooij MA, Lieb K, Gassen NC, Grus FH, Muller MB (2021) Longitudinal CSF proteome profiling in mice to uncover the acute and sustained mechanisms of action of rapid acting antidepressant (2R,6R)-hydroxynorketamine (HNK). Neurobiol Stress 15:100404.
    • Birk M, Baum E, Zadeh JK, Manicam C, Pfeiffer N, Patzak A, Helmstadter J, Steven S, Kuntic M, Daiber A, Gericke A (2021) Angiotensin II Induces Oxidative Stress and Endothelial Dysfunction in Mouse Ophthalmic Arteries via Involvement of AT1 Receptors and NOX2. Antioxidants (Basel) 10.
    • Liu H, Perumal N, Manicam C, Mercieca K, Prokosch V (2020) Proteomics Reveals the Potential Protective Mechanism of Hydrogen Sulfide on Retinal Ganglion Cells in an Ischemia/Reperfusion Injury Animal Model. Pharmaceuticals (Basel) 13.
    • Teister J, Liu A, Wolters D, Pfeiffer N, Grus FH (2018) Peripapillary fluorescence lifetime reveals age-dependent changes using fluorescence lifetime imaging ophthalmoscopy in rats. Exp Eye Res 176:110-120.
    • Teister J, Anders F, Beck S, Funke S, von Pein H, Prokosch V, Pfeiffer N, Grus F (2017) Decelerated neurodegeneration after intravitreal injection of alpha-synuclein antibodies in a glaucoma animal model. Sci Rep 7:6260.
    • Gramlich OW, Teister J, Neumann M, Tao X, Beck S, von Pein HD, Pfeiffer N, Grus FH (2016) Immune response after intermittent minimally invasive intraocular pressure elevations in an experimental animal model of glaucoma. J Neuroinflammation 13:82.
    • Gramlich OW, Lorenz K, Grus FH, Kriechbaum M, Ehrlich D, Humpel C, Fischer-Colbrie R, Bechrakis NE, Troger J (2014a) Catestatin-like immunoreactivity in the rat eye. Neuropeptides 48:7-13.
    • Gramlich OW, Lueckner TC, Kriechbaum M, Teister J, Tao X, von Pein HD, Pfeiffer N, Grus FH (2014b) Dynamics, alterations, and consequences of minimally invasive intraocular pressure elevation in rats. Invest Ophthalmol Vis Sci 55:600-611.
    • Gramlich OW, Beck S, von Thun Und Hohenstein-Blaul N, Boehm N, Ziegler A, Vetter JM, Pfeiffer N, Grus FH (2013) Enhanced insight into the autoimmune component of glaucoma: IgG autoantibody accumulation and pro-inflammatory conditions in human glaucomatous retina. PLoS One 8:e57557.
    • Gramlich O, Beck S, Ziegler A, Pfeiffer N, Grus F (2013) Autoimmune component in glaucoma: IgG autoantibody accumulation, plasma cells and microglia under pro-inflammatory conditions. Invest Ophthalmol Vis Sci 54:3176-.
    • Teister J, Gramlich O, Lueckner T, Kriechbaum M, Pfeiffer N, Grus F (2013) Investigation of the retinal thickness using Spectralis OCT(R) reveals a significant decrease after short time elevation of IOP. Invest Ophthalmol Vis Sci 54:1458-.
    • Lueckner T, Gramlich O, Kriechbaum M, Teister J, Pfeiffer N, Grus F (2013) Suction-cup oculopression offers minimal-invasive opportunities of arbitrary IOP elevations in rats. Invest Ophthalmol Vis Sci 54:1985-.
    • Gericke A, Goloborodko E, Sniatecki JJ, Steege A, Wojnowski L, Pfeiffer N (2013) Contribution of nitric oxide synthase isoforms to cholinergic vasodilation in murine retinal arterioles. Exp Eye Res 109:60-66.
    • Gramlich OW, von Pein HD, Ziegler A, Bitz K, Pfeiffer N, Grus FH (2012) Topical Treatment With A Selective COX-2 Inhibitor Promotes Retinal Ganglion Cell Survival After Optic Nerve Crush. Invest Ophthalmol Vis Sci 53:6273-.
    • Laspas P, Gramlich OW, Muller HD, Cuny CS, Gottschling PF, Pfeiffer N, Dick HB, Joachim SC, Grus FH (2011) Autoreactive antibodies and loss of retinal ganglion cells in rats induced by immunization with ocular antigens. Invest Ophthalmol Vis Sci 52:8835-8848.
    • Gramlich OW, Joachim SC, Gottschling PF, Laspas P, Cuny CS, Pfeiffer N, Grus FH (2011) Ophthalmopathology in rats with MBP-induced experimental autoimmune encephalomyelitis. Graefes Arch Clin Exp Ophthalmol 249:1009-1020.